Semicosimplicial Dglas in Deformation Theory

نویسنده

  • ELENA MARTINENGO
چکیده

We describe a canonical L∞ structure on the total complex of a semicosimplicial differential graded Lie algebra and give an explicit descriprion of the Maurer-Cartan elements and of the associated deformation functor in the particular case of semicosimplicial Lie algebras. We use these results to investigate the deformation functor associated to a sheaf of Lie algebras L and to show that it is naturally isomorphic to the deformation functor associated to the DGLA of global sections of a resolution of L by an acyclic sheaf of DGLAs. As classical examples we recover the DGLA description of infinitesimal deformations of a complex manifold X, of a locally free sheaf E of OX -modules, and of the pair (E ,X).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massey Products and Deformations

It is common knowledge that the construction of one-parameter deformations of various algebraic structures, like associative algebras or Lie algebras, involves certain conditions on cohomology classes, and that these conditions are usually expressed in terms of Massey products, or rather Massey powers. The cohomology classes considered are those of certain differential graded Lie algebras (DGLA...

متن کامل

Lie Atoms and Their Deformations

A Lie atom is essentially a pair of Lie algebras and its deformation theory is that of a deformation with respect to the first algebra, endowed with a trivialization with respect to the second. Such deformations occur commonly in Algebraic Geometry, for instance as deformations of subvarieties of a fixed ambient variety. Here we study some basic notions related to Lie atoms, focussing especiall...

متن کامل

A Static Flexure of Thick Isotropic Plates Using Trigonometric Shear Deformation Theory

A Trigonometric Shear Deformation Theory (TSDT) for the analysis of isotropic plate, taking into account transverse shear deformation effect as well as transverse normal strain effect, is presented. The theory presented herein is built upon the classical plate theory. In this displacement-based, trigonometric shear deformation theory, the in-plane displacement field uses sinusoidal function in ...

متن کامل

Free Vibration of Thick Isotropic Plates Using Trigonometric Shear Deformation Theory

In this paper a variationally consistent trigonometric shear deformation theory is presented for the free vibration of thick isotropic square and rectangular plate. In this displacement based theory, the in-plane displacement field uses sinusoidal function in terms of thickness coordinate to include the shear deformation effect. The cosine function in terms of thickness coordinate is used in tr...

متن کامل

Finite Element Analysis of Functionally Graded Skew Plates in Thermal Environment based on the New Third-order Shear Deformation Theory

Functionally graded materials are commonly used in thermal environment to change the properties of constituent materials. The new numerical procedure of functionally graded skew plates in thermal environment is presented in this study based on the C0-form of the novel third-order shear deformation theory. Without the shear correction factor, this theory is also taking the desirable properties a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008